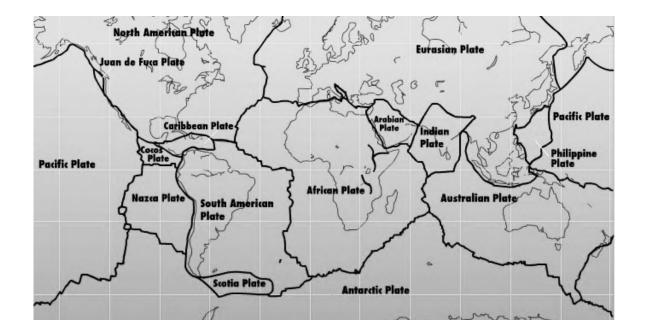


Seismic Restraint of Non-Structural Elements Based on AS1170.4:2007

· · · · · · · ·



What is an Earthquake?

Vibration caused by rocks breaking under stress

Railway line deformed by magnitude 6.8 – Meckering WA - 1968

Australian Earthquakes

- All earthquakes that do not occur on plate margins are called intraplate earthquakes.
- Given our location, all earthquakes on mainland Australia are intraplate.
- Intraplate earthquakes are not as common as those on plate margins, however major earthquakes with magnitudes of 7.0 or more do happen.

Potential effects of Earthquakes on Mechanical Plant

What is the difference between survival and destruction?

4

Effects of Earthquakes on Mechanical Plant

Potential modes of failure that are overlooked

5

Effects of Earthquakes on Mechanical Plant

Strong mounts require strong anchor points

• • • • • • •

• •

• •

This all raises questions such as:

- / Why did the systems in the previous pictures fail?
- / When is Seismic Restraint Required?
- Where do we start?

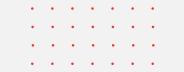


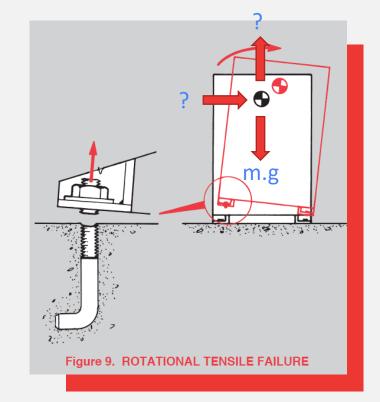
This all raises questions such as:

- Why did the systems in the previous pictures fail?
 - Fortunately, people were asking the same questions many years ago.

I When is Seismic Restraint Required?

- After many years of failure mode analysis, guidelines were developed.
- Now dependent on the Earthquake Design Category (EDC) according to AS1170.4 (Earthquake actions in Australia)
- / Where do we start?
 - By determining what is required on a job-by-job basis.
 - I How is this determined?


• •


- We can see that there is potential for damage.
- How do we assess what measures need to be put in place to avoid damage?
- I The ultimate goal is to ensure that all components remain anchored and plant remains operational after an event
- I The next question is: how do we ensure that they won't move?

Mason Mercer

Earthquake Design Categories & Design Accelerations

- I The Australian Standard for Earthquake actions provides equations that take many factors regarding the component location into account.
- I The result of working through the tables is a designated earthquake design category (EDC) for the job and ultimately a design acceleration to work with.
- Step 1 is to determine the EDC for the job (this should be pre-defined for each job)

Dependant on:

- I Design working life of the structure
- Importance level of the structure
- Annual probability of exceedance (design working life & importance)
- Hazard factor for the specific geographic location
- I Site sub-soil class
- Structure height
- / "No requirement", EDC I, EDC II or EDC III

TABLE2.1

SELECTION OF EARTHQUAKE DESIGN CATEGORIES

Importance level, type of		$(k_p Z)$ for site	sub-soil class	1	Structure	Earthquake	Class A _e —Strong rock.		
structure (see Clause 2.2)	E _e or D _e	C _e	Be	A _e	height, h_n (m)	design category	Class B _e —Rock. Class C _e —Shallow soil.		
1	_					Not required to be designed for earthquake actions	Class D _e —Deep or soft s Class E _e —Very soft soil.		
Domestic					Top of roof ≤8.5	Refer to Appendix A	•		
structure (housing)		-	_		Top of roof >8.5	Design as importance level 2			
	≤0.05	≤0.08	≤0.11	≤0.14	≤12 >12, <50 ≥50	I II III			
2	>0.05 to ≤0.08	>0.08 to ≤0.12	>0.11 to ≤0.17	>0.14 to ≤0.21	<50 ≥50	II III			
	>0.08	>0.12	>0.17	>0.21	<25 ≥25	II III	_ This is what we		
3	≤0.08	≤0.12	≤0.17	≤0.21	<50 ≥50	II III	want to know		
	>0.08	>0.12	>0.17	>0.21	<25 ≥25	II III			
4		-	_		<12 ≥12	II III			

NOTES:

1 Values for k_p and Z are given in Section 3. Site sub-soil class are given in Section 4.

2 A higher earthquake design category or procedure may be used in place of that specified.

3 Height (h_n) is defined in Clause 1.5. For domestic structures refer to Appendix A.

4 In addition to the above, a special study is required for importance level 4 structures to demonstrate they remain serviceable for immediate use following the design event for importance level 2 structures.

How is the EDC determined?

•••

• •

• • •

· · · · · · · ·

• •

. .

TABLE F1

• • •

• •

· · ·

STRUCTURE TYPES FOR IMPORTANCE LEVELS

Consequences of failure	Description	Importance level	Comment
Low	Low consequence for loss of human life, <i>or</i> small or moderate economic, social or environmental consequences	1	Minor structures (failure not likely to endanger human life)
Ordinary	Medium consequence for loss of human life, <i>or</i> considerable economic, social or environmental consequences	2	Normal structures and structures not falling into other levels
	High consequence for loss of human life, <i>or</i>	3	Major structures (affecting crowds)
High	very great economic, social or environmental consequences	4	Post-disaster structures (post disaster functions or dangerous activities)
Exceptional	Circumstances where reliability must be set on a case by case basis	5	Exceptional structures

AS/NZS 1170.0-2002 pg.31

• • • • • •

.

TABLE F2

ANNUAL PROBABILITY OF EXCEEDANCE OF THE DESIGN EVENTS FOR ULTIMATE LIMIT STATES

Design working	Importance	Design events for safety in terms of annual probability of exceedance						
life	level	W	ind	S	E. d.			
		Cyclonic	Non-cyclonic	Snow	Earthquake			
Construction equipment, e.g., props, scaffolding, braces and similar	2	1/250	1/100	1/50	1/100 *			
	1	1/250	1/25	1/25	1/25 * †			
	2	1/250	1/100	1/50	1/100 *			
Less than 6 months	3	1/500	1/250	1/100	1/250 *			
	4	1/1000	1/1000	1/250	1/1000			
	1	1/250	1/25	1/25	1/25 †			
5	2	1/250	1/250	1/50	1/250 *			
5 years	3	1/500	1/500	1/100	1/500			
	4	1/1000	1/1000	1/250	1/1000			
	1	1/250	1/50	1/25	1/50 * †			
25	2	1/250	1/250	1/50	1/250 *			
25 years	3	1/500	1/500	1/100	1/500			
	4	1/1000	1/1000	1/250	1/1000			
	1	1/250	1/100	1/50	1/100 *			
50 10000	2	1/500	1/500	1/150	1/500			
50 years	3	1/1000	1/1000	1/250	1/1000			
	4	1/2500	1/2500	1/500	1/2500			
	1	1/500	1/250	1/100	1/250			
100 years or more	2	1/1000	1/1000	1/250	1/1000			
100 years or more	3	1/2500	1/2500	1/500	1/2500			
	4	\$	\$	\$	\$			

* For Australia, earthquake loads for these annual probabilities are low and unlikely to control the design, but it is important to provide appropriate detailing to achieve the performance required.

† Structures for primary produce with low human occupancy need not be designed for earthquakes.

AS/NZS 1170.0-2002 pg.32

•

.

•

[‡] For importance level 4 structures with design working life of 100 years or more, the design events are determined by a risk analysis but need to have probabilities less than or equal to those for importance level 3.

14

• •

.

•••

· · · · ·

TABLE 3.1

PROBABILITY FACTOR (k_p)						
Annual probability of exceedance	Probability factor					
Р	k _p					
1/2500	1.8					
1/2000	1.7					
1/1500	1.5					
1/1000	1.3					
1/800	1.25					
1/500	1.0					
1/250	0.75					
1/200	0.7					
1/100	0.5					
1/50	0.35					
1/25	0.25					
1/20	0.20					

NOTE: The annual probability of exceedance in Table 3.1 is taken from the BCA and AS/NZS 1170.0.

AS/NZS 1170.0-2002 pg.18

.

.

TABLE 3.2

HAZARD FACTOR (Z) FOR SPECIFIC AUSTRALIAN LOCATIONS

. . .

.

. .

Location	Ζ	Location	Ζ	Location	Ζ
Adelaide	0.10	Geraldton	0.09	Port Augusta	0.11
Albany	0.08	Gladstone	0.09	Port Lincoln	0.10
Albury/Wodonga	0.09	Gold Coast	0.05	Port Hedland	0.12
Alice Springs	0.08	Gosford	0.09	Port Macquarie	0.06
Ballarat	0.08	Grafton	0.05	Port Pirie	0.10
Bathurst	0.08	Gippsland	0.10	Robe	0.10
Bendigo	0.09	Goulburn	0.09	Rockhampton	0.08
Brisbane	0.05	Hobart	0.03	Shepparton	0.09
Broome	0.12	Karratha	0.12	Sydney	0.08
Bundaberg	0.11	Katoomba	0.09	Tamworth	0.07
Burnie	0.07	Latrobe Valley	0.10	Taree	0.08
Cairns	0.06	Launceston	0.04	Tennant Creek	0.13
Camden	0.09	Lismore	0.05	Toowoomba	0.06
Canberra	0.08	Lorne	0.10	Townsville	0.07
Carnarvon	0.09	Mackay	0.07	Tweed Heads	0.05
Coffs Harbour	0.05	Maitland	0.10	Uluru	0.08
Cooma	0.08	Melbourne	0.08	Wagga Wagga	0.09
Dampier	0.12	Mittagong	0.09	Wangaratta	0.09
Darwin	0.09	Morisset	0.10	Whyalla	0.09
Derby	0.09	Newcastle	0.11	Wollongong	0.09
Dubbo	0.08	Noosa	0.08	Woomera	0.08
Esperance	0.09	Orange	0.08	Wyndham	0.09
Geelong	0.10	Perth	0.09	Wyong	0.10
Meckering region				Islands	
Ballidu	0.15	Meckering	0.20	Christmas Island	0.15
Corrigin	0.14	Northam	0.14	Cocos Islands	0.08
Cunderdin	0.22	Wongan Hills	0.15	Heard Island	0.10
Dowerin Goomalling Kellerberrin	0.20 0.16 0.14	Wickepin York	0.15 0.14	Lord Howe Island Macquarie Island Norfolk Island	0.06 0.60 0.08

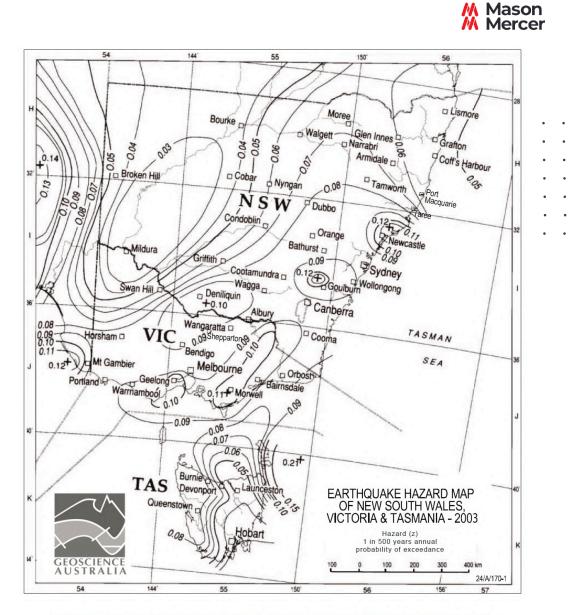


FIGURE 3.2(A) HAZARD FACTOR (Z) FOR NEW SOUTH WALES, VICTORIA AND TASMANIA

• • • • • • •

16

TABLE 2.1

M	Mason
M	Mercer

. .

• •

SELECTION OF EARTHQUAKE DESIGN CATEGORIES

Importance level, type of		$(k_p Z)$ for site	Structure	Earthquake			
structure (see Clause 2.2)	E _e or D _e	C _e	Be		A _e	height, h_n (m)	design category
1		_	_			_	Not required to be designed for earthquake actions
Domestic structure						Top of roof ≤8.5	Refer to Appendix A
(housing)		_	Top of roof >8.5	Design as importance level 2			
	≤0.05	≤0.08	≤0	.11	≤0.14	≤12 >12, <50 ≥50	I II III
2	>0.05 to ≤0.08	>0.08 to ≤0.12	>0.11 t	o ≤0.17	>0.14 to ≤0.21	<50 ≥50	II III
	>0.08	>0.12	>0	.17	>0.21	<25 ≥25	II III
3 →	≤0.08	≤0.12	≤0	.17—	≤0.21 ►	<50 ≥50	
	>0.08	>0.12	>0	.17	>0.21	<25 ≥25	II III
4	_					<12 ≥12	II III

Class A_e—Strong rock.

Class B_e—Rock.

Class C_e—Shallow soil.

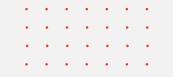
Class D_e—Deep or soft soil.

Class E_e—Very soft soil.

This is what we want to know

Earthquake design category consistent throughout a given project.

• • • • • • •


NOTES:

1 Values for k_p and Z are given in Section 3. Site sub-soil class are given in Section 4.

2 A higher earthquake design category or procedure may be used in place of that specified.

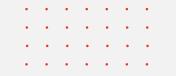
3 Height (h_n) is defined in Clause 1.5. For domestic structures refer to Appendix A.

4 In addition to the above, a special study is required for importance level 4 structures to demonstrate they remain serviceable for immediate use following the design event for importance level 2 structures.

We know the EDC for the job... Now what?

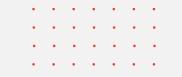
- What forces do we need to account for to conform?
- In other words, how strong do the restraints need to be?
- / EDCI Clause 5.3
- EDC II Clause 5.4 or Section 8 (depending on situation)
- / EDC III Section 8

• • • • • • •

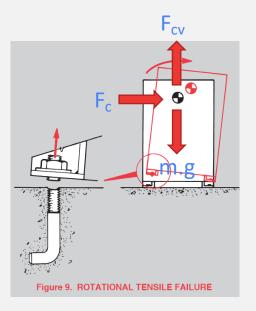


EDC I – Clause 5.3

Cannot be applied to structures with height over 12m.
Fi=0.1Wi hence horizontal force = 10% of component mass


EDC II – Clause 5.4

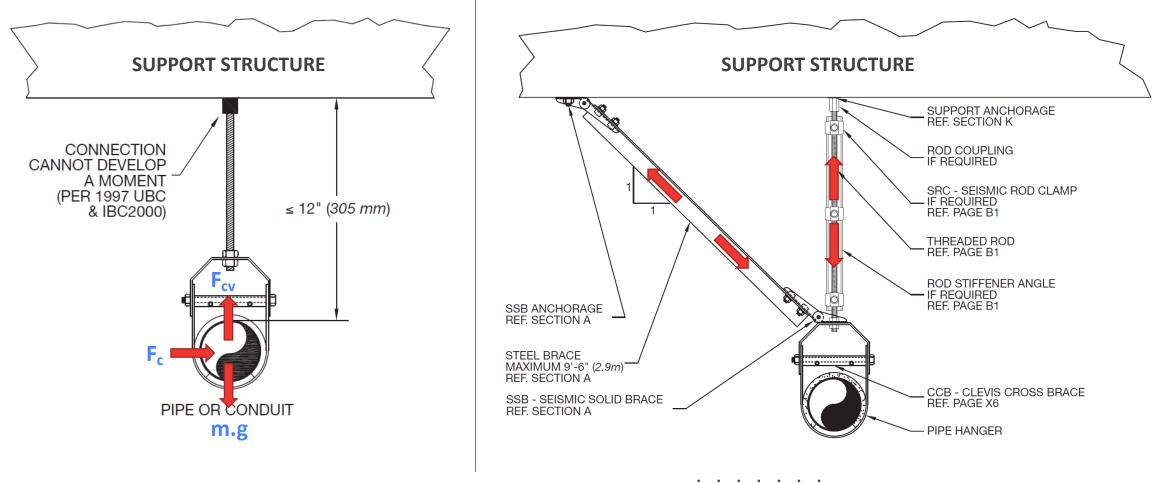
- Structures not exceeding 15m with importance level 2 or 3: "parts and components of non-brittle construction may be attached using connectors designed for horizontal capacity of 10% of the seismic weight of the part"
- / All others are designed to Section 8 ... Same as EDC III


or more

EDC III – Section 8

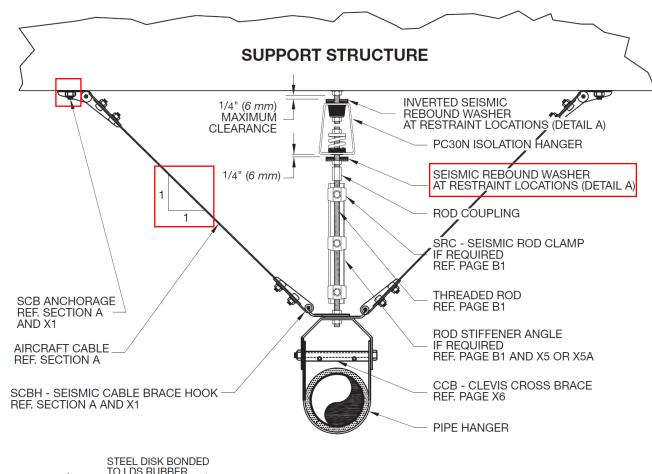
- *I* Earthquake forces...
- Fc = Horizontal force applied to the component at its centre of mass.
- Fcv = Vertical force (50% of Fc)
- I Fc is calculated from the probability factor, hazard factor, spectral shape factor, height amplification factor, component importance factor, component amplification factor and the component ductility factor.
- / Up to a maximum of Fc = 0.5Wc... ie. max design acceleration 0.5G

M Mason Mercer


up to

The same forces are imposed on hanging equipment, piping and ducts. Sway bracing is used to limit motion. Below is an example of solid strut bracing.

• • •


.

22

. .

- •••••
- • • • •
- • • • •
- • • • •

Solid struts must not be used with isolated pipe work (vibration path)

. .

.

- / Cable restraints solve the problem
- Only work in tension

• •

. .

There are exceptions from these design values in certain situations

Only applies to "supports for ducts and piping distribution systems"

As per AS1170.4-2007, Section 8.1.4

· · · · · · · · ·

24

Exceptions - supports for ducts & piping distribution systems

(A) In structures classified as being in EDC I.

Exceptions - supports for ducts & piping distribution systems

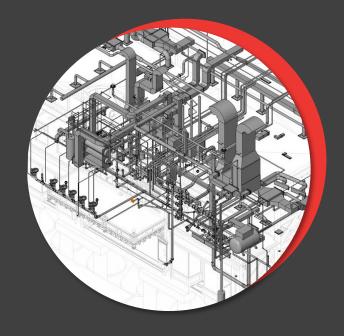
(A) In structures classified as being in EDC I.

(B) For gas piping less than 25mm inside diameter.

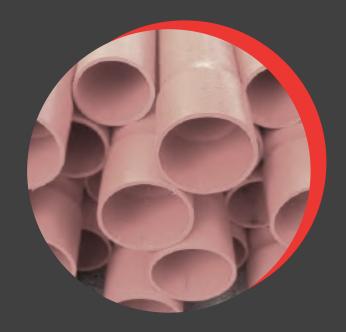
.

• •

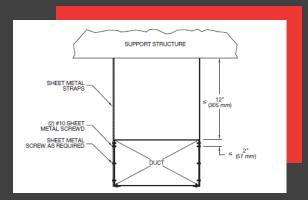
• •

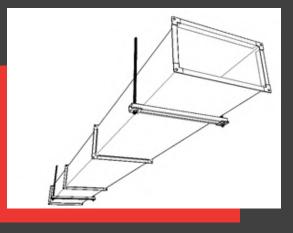


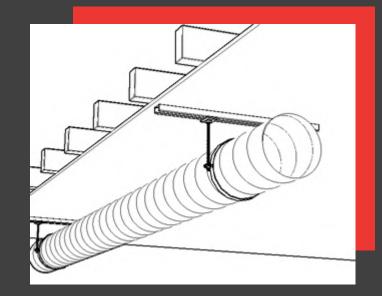
- (A) In structures classified as being in EDC I.
- (B) For gas piping less than 25mm inside diameter.
- (C) For piping in boiler and mechanical rooms less than 32mm inside diameter.

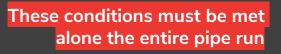


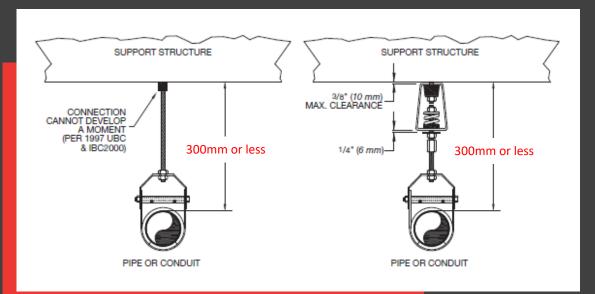
- (A) In structures classified as being in EDC I.
- (B) For gas piping less than 25mm inside diameter.
- (C) For piping in boiler and mechanical rooms less than 32mm inside diameter.
- (D) For all other piping less than 64mm inside diameter.

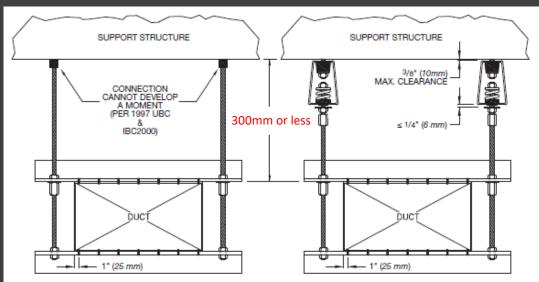



- (A) In structures classified as being in EDC I.
- (B) For gas piping less than 25mm inside diameter.
- (C) For piping in boiler and mechanical rooms less than 32mm inside diameter.
- (D) For all other piping less than 64mm inside diameter.
- (E) For all electrical conduit less than 64mm inside diameter.


- (A) In structures classified as being in EDC I.
- (B) For gas piping less than 25mm inside diameter.
- (C) For piping in boiler and mechanical rooms less than 32mm inside diameter.
- (D) For all other piping less than 64mm inside diameter.
- (E) For all electrical conduit less than 64mm inside diameter.
- (F) For all rectangular air-handling ducts less than 0.4m2 in cross sectional area.






- (A) In structures classified as being in EDC I.
- (B) For gas piping less than 25mm inside diameter.
- (C) For piping in boiler and mechanical rooms less than 32mm inside diameter.
- (D) For all other piping less than 64mm inside diameter.
- (E) For all electrical conduit less than 64mm inside diameter.
- (F) For all rectangular air-handling ducts less than 0.4m2 in cross sectional area.
- (G) For all round air-handling ducts less than 700mm in diameter.

- (A) In structures classified as being in EDC I.
- (B) For gas piping less than 25mm inside diameter.
- (C) For piping in boiler and mechanical rooms less than 32mm inside diameter.
- (D) For all other piping less than 64mm inside diameter.
- (E) For all electrical conduit less than 64mm inside diameter.
- (F) For all rectangular air-handling ducts less than 0.4m2 in cross sectional area.
- (G) For all round air-handling ducts less than 700mm in diameter.
- (H) For all ducts and piping suspended by individual hangers 300mm or less in length from the top of the pipe to the bottom of the support for the hanger.

In the event that sway bracing is required

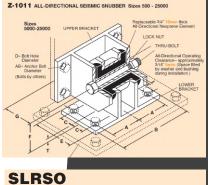
. . .

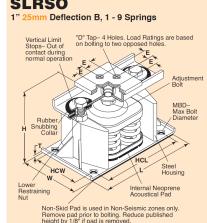
- Restraint system must resist horizontal and vertical design accelerations (Fc & Fcv that we looked at earlier)
- Simplified rules of thumb and tables available in "Seismic Restraint Guidelines" – Mason Industries (Available in either soft or hard copy)
- Although based on the IBC, tables and sway bracing techniques are still relevant.

We are here to help.

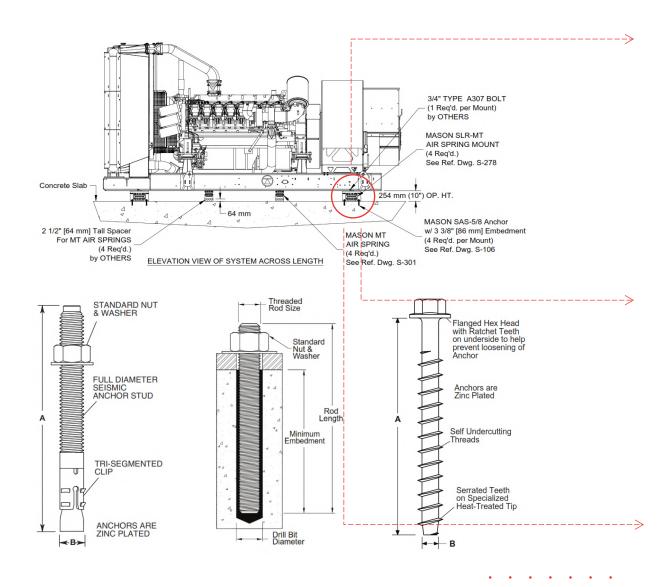
 Contact us to arrange a meeting to discuss individual projects.

.

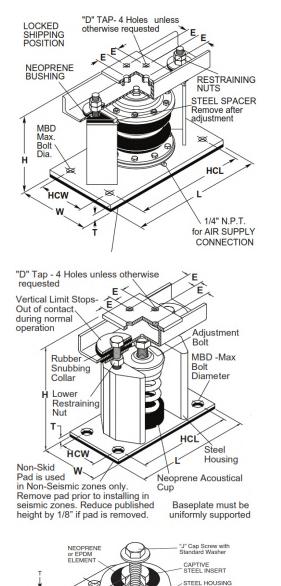

Submittal packages available on request.


· · · · · · · · · · · ·

- If machinery is solid mounted (no isolation), anchor methods must be sufficient to resist the horizontal and vertical forces discussed earlier.
- If machinery is isolated (neoprene, springs, air springs), a direct connection to structure would create a path for vibration.
- Seismic snubbers are the answer. They can be either stand alone or built into the isolation mounts.


Restraint of Equipment

.


.

.

• • •

.

6 – "G"

Diameter Holes

Mason Mercer

• •

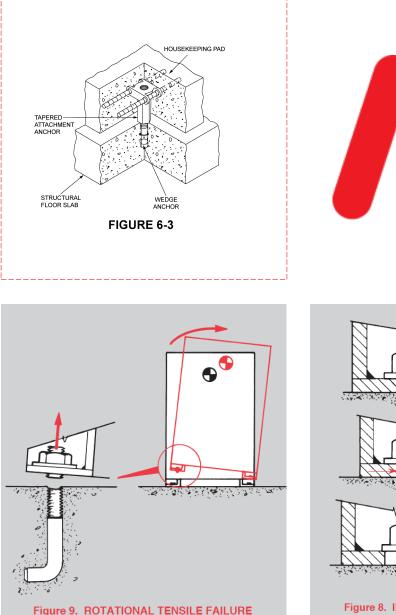
. .

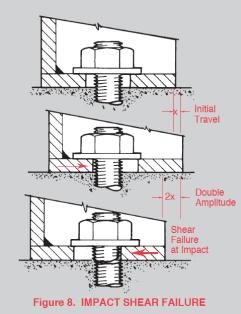
• •

. .

. .

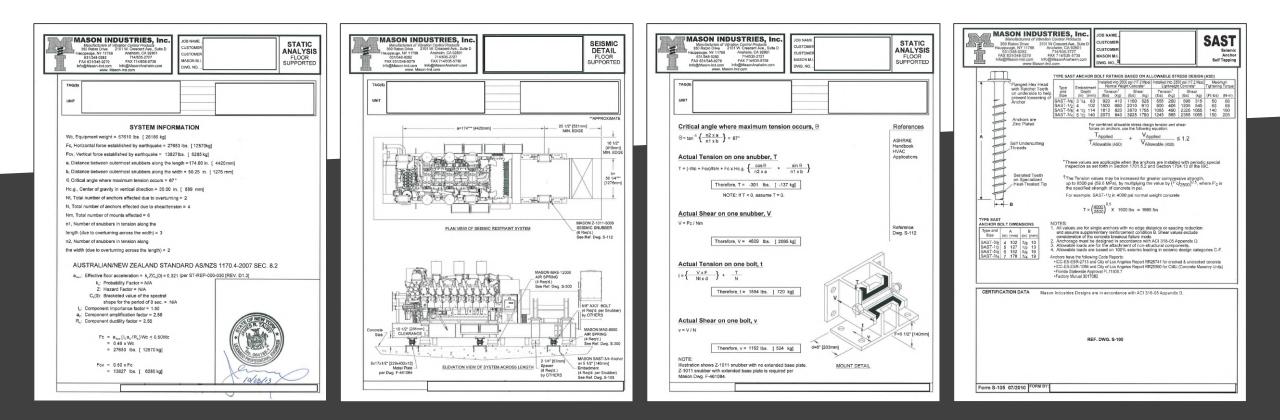
. .

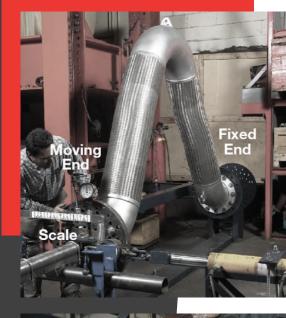

What is a seismic snubber?


- I Seismic snubbers provide physical restraint of machinery.
- During normal operation, there is no direct contact between the isolated machine and the structure. (no path for vibration)
- Seismic activity can produce a wide range of frequencies, if aligned with the natural frequency of an isolated system resonance occurs.
- Resonance can amplify forces applied to anchors.
- Neoprene pads and washers are integrated into Mason snubbers to reduce the forces that components are exposed to.
- Anchors bolts are defined in submittal packages.
- I Extended base plates can be used to increase anchor strength.

Anchor bolts

- A chain is only as strong as its weakest link.
- Defined in submittal packages
- Housekeeping pads (plinths) must also be anchored (tied to structure) – starter bars – if overlooked, plinth anchors are an option.
- I This is why we offer submittal packages which define appropriate anchors for the application.

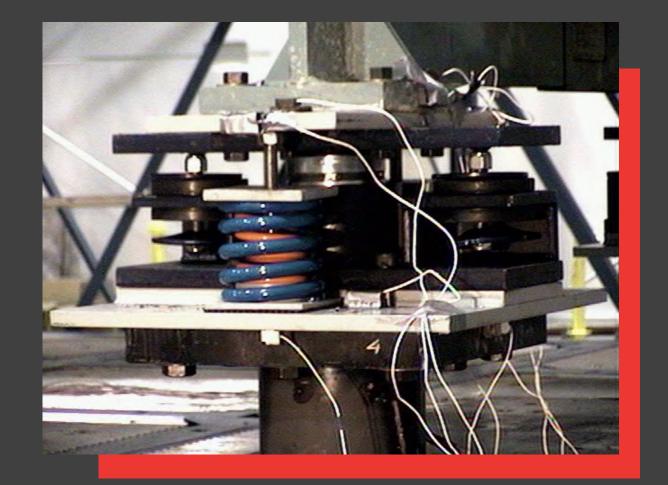




• • • • • • •

Extracts from a Mason Submittal Package

Seismic Certification


- All Mason products certified for use in seismic applications have been tested both in-house during development as well as by a third party.
- All published rated values are results from physical testing.
- Conservative safety factors are built into all published ratings.
- Latest certification methods in the US include shaker table testing.
- / OPA Numbers OSPD

.

· · · · · · · · · · · · · ·

Seismic Testing of Spring Mounts & Snubbers

Seismic Testi

Seismic Testing of Cooling Tower

· · · · · · · ·

•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•

. .

Summary

- / What is an Earthquake
- Potential Effects
- / What needs to be done
- AS1170.4 (Earthquake actions in Australia)
- I EDC's & Design Accelerations
- I Exceptions from these requirements
- How we resist the imposed forces
- Types of seismic restraint and anchors
- How hardware is tested and certified

• • •

- • •
- • •
- . . .
- . . .
- . . .
- . . .

Contact

Jonathan Watson

jw@masonmercer.com.au www.masonmercer.com.au 0450 336 245

· · · · · · · · ·